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Abstract: Following the derivation of a distributed-parameter large basin runoff model from a lumped-parameter version for the Great
Lakes in the companion paper, we here apply it to the Kalamazoo River watershed in southwest Michigan. First we review relevant similar
efforts and then describe the digitization of the watershed into a network of cells through which watershed internal flows are routed. We
present the technology used on the Kalamazoo River to create grids of topography, soils, land use, and vegetation data. We describe t
calibration of both lumped-parameter and distributed-parameter runoff models on the Kalamazoo River and use observed spatial dat
variations in our parameter determinations. We investigate alternative evapotranspiration schemes, spatial parameter patterns, so
insolation interpretations, and temporal scaling and compare model results. We suggest model extensions for future work.
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Background zone, lower soil zone, and groundwater zone. The LBRM uses
readily available daily climatological and hydrologic data, re-
The development of large-scale operational hydrologic models is quires few parameters and data, and is applicable to other large
essential for support of long-term water resource planning and watersheds beyond the Great Lakes basin. However, spatial vari-
management over large river basins. Large-scale operational hy-ability of watersheds is not fully incorporated in the lumped-
drologic models are defined over large ar€ag0® km?) and long parameter LBRM. With the rapid development in computing tech-
timescales typically for use over monthly and annual or longer Nology and the increasing availability of multiple digital
timescales at a daily interval. Large-scale models are often con-databases, a distributed LBRM is possible to utilize available da-
strained by limited data availability, computational requirements, tabases and new algorithms in simulating rainfall-runoff in large
and model application costs over larger areas, so they must havdasins. The companion paper by Croley and(B@&05 discusses
few parameters, use easily accessible meteorological and hydrodifferences between micro- and macroscale models and proposes
logic databases, and be user-friendly. Because of such limits,a framework to modify the macroscale lumped-parameter LBRM
many large-scale hydrologic models—including the Stanford Wa- to a 2D distributed LBRM. In this paper, we present the imple-
tershed Model(Crawford and Linsley 1966 the United States mentation results of the 2D LBRM framework to the Kalamazoo
Geological Survey’s Precipitation-Runoff Modeling System River basin in southwest Michigan; Fig. 1. We first describe pro-
(Leavesley and Stannard 199%he Hydrologic Simulation Pro- ~ cessing multiple databases and calibrating the 2D LBRM, then
gram in FORTRAN(Bicknell et al. 1996, and the Large Basin  present model application results to the study watershed, and fi-
Runoff Model (Croley 2002—are spatially lumped parameter hally discuss alternative model structures for future development
models and hence do not adequately take into account the effect@nd refinement.
of spatial variations of landscape.
The Large Basin Runoff Mod€lLBRM) of the Great Lakes
Environmental Research LaboratoffsLERL) is a lumped- Discretizing Watershed
parameter, interdependent tank-cascade m@@edley 2002. It
uses mass continuity equations coupled with linear reservoir con-Spatial variations of precipitation, soil, vegetation, and topogra-
cepts, and it consists of four components: land surface, upper soilphy have significant impacts on runoff modelitgeven 2000
Although lumped-parameter models treat the catchment as a
'Research Hydrologist, Great Lakes Environmental Research Single unit, with state variables representing averages over the

Laboratory, 2205 Commonwealth Blvd., Ann Arbor, Ml 48105-2945. entire catchment area, distributed models make predictions that
2Associate Professor, Dept. of Geography, Western Michigan Univ., are distributed in space, with state variables representing local
3234 Wood Hall, Kalamazoo, M| 49008-5424. averages. These local averages are defined over a number of ele-

*Hydraulic Engineer, Water Management Team, U.S. Army Engineer ments or grid squares and are obtained by solving the equations
Division, Great Lakes and Ohio River Corps of Engineers, P.O. BOX for the state variables associated with every elem@&even
115,3'?”8.””6‘"’ OH 45201'1;5% wober 1 2005, S © di _2000. Compared with lumped models, distributed modeigen

ote. viscussion open unti ctober: 2, - >eparate ISCUSSIonSsimple 2D oneptake into account the variation of spatial hetero-

must be submitted for individual papers. To extend the closing date by it d hel del d | bett d
one month, a written request must be filed with the ASCE Managing geneity and help modelers and resource planners betier under-

Editor. The manuscript for this paper was submitted for review and pos- Stand the spatial response to hydrologic events; e.g., see the areal,
sible publication on July 7, 2003; approved on September 7, 2004. This Nonpoint source watershed environment response simulation
paper is part of thdournal of Hydrologic Engineering Vol. 10, No. 3, (ANSWERS model (Beasley et al. 1980and the variable infil-

May 1, 2005. ©ASCE, ISSN 1084-0699/2005/3-182-191/$25.00. tration capacity mode(Liang et al. 1994 Available topographic
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Fig. 1. Great Lakes location map

databases and algorithms make the development of distributedfeasible way to represent the spatial variability of the watershed.
models readily feasible. Operational models should take advan-The size of the grids or HRUs should be determined by compre-
tage of available databases for elevation, hydrography, soils, andhensive consideration of the characteristics of climate, topogra-
meteorology to account for spatial variations of climate, soil, to- phy, soil, land use, and vegetation in the study area.
pography, vegetation, and land-use practices. Watersheds should
be discretized into either grids or hydrological response units; Present Technology
large-scale operational models then should be applied to each
resulting cell, and the output from each cell should be routed to In this study, the current lumped-parameter LBRM is expanded to
the watershed outlet. two (spatia) dimensions for a study watershed represented in a
Although discretization of watersheds has been a very impor- grid system(Croley and He 2006 Since determining HRUs in-
tant topic in recent years, research is still evolving. Wood and volves the integration of soil, vegetation, and topography infor-
Lakshmi (1993 proposed the use of a representative elementary mation and since there are no standard procedures to define HRUs
area (REA) for representation of spatial variability. The REA, and relevant input parameters for each HRU, we chose to dis-
ranging in size from 1-2.25 kirto 5-10 kr?, is defined as the  cretize the study watershed into a grid of 1 km by 1 km cétis
fundamental scale for detailed spatial modeling of hydrological match existing areal coverage of meteorological datsed on
processes. Beyond the REA, a statistical approach can be used tthe watershed boundary determined by using a GIS interface, the
model the hydrological processes to simplify the computational ArcView Nonpoint Source ModelingAVNPSM) interface by He
burden. Goodrich et al1997 propose the concept of “a critical et al.(2001). Subsequently, model parameters are defined for each
transition threshold area” of about 37—60 (©837—0.6 k) and grid cell on the basis of soil, topography, and vegetation. The
report that watershed runoff response becomes more nonlineamodified 2D LBRM is then applied to each 1 krgrid cell, and
with increasing watershed scale beyond that threshold area. Othethe output flow from each cell is routed accumulatively down-
researchers have proposed the concepts of hydrologically similarstream.
units (HSUsg and hydrologic response unitslRUs) to represent A digital elevation model from the U.S. Geological Surv@y
aggregate areas of similar hydrologic behavior on the basis of 1:250,000 scaleis used to derive topographically related param-
topography, land use, soil, and vegetati@ecker and Braun eters (flow direction, receiving cell number, and slgpey the
1999; Karvonen et al. 1999This approach, as compared with the AVNPSM. Fig. 2 shows elevation and slope for the Kalamazoo
grid approach(systematically discretizing the watershed into a River watershed. Flow from a cell can flow into one of eight
grid of squarey is more efficient computationally as a specific set adjacent cells downstream on the basis of the slope differences
of model parameters and is applicable to each type of HRU or among them. Subsequently, each grid is assigned a flow direction
HSU. For 2D hydrologic modeling at large scales, discretization and a receiving cell numbeéa cell that receives the flow from the
of the study watershed into either grids or HRUs appears to be aadjacent upstream cgllAs the flow net allows only one outlet,
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Fig. 2. Kalamazoo River watershed elevation and sl@b&n? resolution

flow directions must be carefully inspected to eliminate any flow Calibration
loops (Croley and He 2005 A utility module in the AYNPSM
was used to check such errors and allow a user to edit flow di-
rection either by one cell at a time or several cells at a fileet
al. 2002. The verified flow net is then used to route fl¢@roley Calibration began with the lumped-parameter LBRM applied to
and He 200%k A 1:250,000-scale USGS 1990 land-cover database the Kalamazoo River basifone “cell” defined for the whole
(USGS Prototype 1990 Conterminous U.S. Land Cover Charac-5,612-kn? watersheyl Calibration consists of a systematic search
teristics Data Set CD-ROMis used to derive a land-cover cat- of the parameter space to minimize the root-mean-square error
egory (code for each grid cell by the AVNPSM; see Fig. 3. By between actual daily outflow volumes and model outflow vol-
using the suggested values in Table 1 to associate flow roughnessmes. The search consists of minimizing this error for each pa-
to land cover(Mays 2001; Dingman 2002 Fig. 3 also shows rameter, selected in rotation, until convergence in all parameters
flow roughness as Manningis to two or three significant figures is achievioley 2002. This

A state soil geographic databa&®TATSGO is used to derive procedure is implemented IRORTRAN95 for IBM-compatible
depth, available water capacitpWC), soil texture, and perme-  personal computers, suitable for use under either MSDOS or Win-
ability for upper and lower soil zones. Although some research dows(95, 98, NT, 2000, or X The software can also be used to
(Cosby et al. 1984; Abdulla et al. 1996; Yu et al. 2D0&s esti- maximize sample correlation between actual and model daily
mated hydraulic conductivity from soil texture and porosity, it is flow volumes. Although this software does not give unique cali-
listed as permeability in STATSGO. STATSGO Soil Layer 1 is brated parameter sets, the hydrology that results from the param-
used as the upper soil zofilgdS2) for the LBRM, and Layers 2to  eter sets of different calibrations, starting from different initial
6 are used as the lower soil zofl&52). Values of depth and AWC  sets of parameter values, is repeatable. Various calibration periods
for Layers 2 to 6 are aggregated to generate area-weighted valuesvere tested, as summarized in Table 2. The idea is to use the early
for the lower soil zone. First averaging the low and high values of part of the 1948—1999 data period for calibration, saving the latter
permeability for each of Layers 2 through 6 and then weighting part for later verification studies. The first 2 years of the period
by the relative depth of each layer determine the average perme-are used for model initialization and should not contribute to op-
ability for the lower soil zone. Average depth, AWC, and perme- timization statistics. Leaving out the first 2 years from the cali-
ability in the USZ and LSZ are further weighted areally to deter- bration is illustrated in Table 2. We compare the 1948-1957 and
mine their value for each soil associati@oil association is a unit ~ 1950-1959 rows or the 1948-1967 and 1950-1969 rows. In both
on which soil information is mapped and assempl&éSDA SCS cases, correlation(Column 2 and root-mean-square error
1993. The derived soil depth, AWC, texture, and permeability by (RMSE, Column 3 associated with optimum parameter sets im-
map unit are then assigned to each grid cell by the AVNPSM prove. Also, average model outflow is closer to actisale Col-
interface(He et al. 2001 Fig. 4 shows upper and lower soil-zone umn 4. Internal model flow average@ Columns 5-9 are af-

Lumped-Parameter Large Basin Runoff Model

depth and permeability. fected. In Table 2, the 1950-1959 data set yields better statistics
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Fig. 3. Kalamazoo River watershed land cover and flow roughfidsr? resolution
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Table 1. Manning’s Flow Roughness as Function of Land Cover

We then modified the lumped-parameter calibration procedure

for use in a distributed-parameter setting to optimize the spatial-

Land cover Manning's
Urban 0.01
Agriculture 0.04
Deciduous forest 0.24
Evergreen forest 0.41
Water 0.04
Wetland 0.07
Barren land 0.05

average values of all parameters while imposing a spatial struc-
ture onto each parameter over the cells of the watershed. We
initially used a shorter calibration period than used for the
lumped-parameter calibrations shown in Table 2 to reduce the
extensive computation times associated with the distributed
model calibration. First, we used no spatial structure in the pa-
rameters; i.e., each parameter was taken as spatially uniform over
the cells of the watershed. We used the results from the last pa-

rameter experiments, just described, as starting values for the pa-
rameter calibrations. After calibrating the values of spatially con-

than the 1950-1969 set. We wanted to find the data set yieldingstant parameters, we introduced 10% spatial variation into each
the best possible fit to minimize parameter determination issuesparameterp, according to observed normalized variation in se-
associated with data inappropriateness and allow concentration onected datax

model structure in subsequent calibration experiments. Trial and

error showed that the 1950-1963 and 1950-1964 periods give the X; 10%
overall best calibrations; the former gives the best correlation, and o =a -1

the latter gives the best RMSE.

Distributed-Parameter Large Basin Runoff Model

We began distributed-parameter LBRM determinations experi-
mentally, keeping each parameter spatially constant over the wa
tershed and changing them one at a time. We compared mode
outflows with observed values to devise, by inspection, an accept-

100 % +1 _Ef(xi,lo% (l)
0

n
1
n2%

where a;=model parameter for cell; a«=spatial average value
for the parameter, determined in a calibration along with values of
the spatial average values of the other paramexersiata value

or cell i; n=number of cells in the watershed; and

able starting parameter set for a calibration. Basically, we had to

increase the upper soil-zone capa.lciyy b)_/ an order of magnitude, f(x,8) = X e, )
which controls surface runoff and infiltration; see Eg). in Cro- n 100%
ley and He(2009. The partial-area concept that the model uses is —E X;

nic

a large-area concept and is not appropriate for small cell areas at

the same value for upper soil-zone capacity. Original values did

not allow enough infiltration, resulting in a very “flashy” surface For example, the linear reservoir coefficient for basin outflow on
response to all storms. Fig. 5 illustrates with results from the first cell i, (a);, was taken ag=10% proportional to the normalized
and last parameter experiments.

USZ Depth (m)

USZ Permeability (in/hr)

square root of the slope of a cell, as follows:

L 3
. ‘ ,‘k"(;.l
[y
19 0 1.9

LSZ Depth (m)

LSZ Permeability (in/hr)

Fig. 4. Kalamazoo River watershed soil-zone depths and permeabilitigs? resolution
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1957
Upper zone
evaporation

1956
0.247
0.231
0.244
0.239
0.246
0.253

flow

1955
Groundwater

1954

0.050
0.039
0.036
0.019
0.032
0.035

Long-term average ratio to surface supply
Interflow

1953

1952
0.070
0.070
0.075
0.083
0.068
0.066

Surface
runoff

1951

1950
Model
outflow

0.991
0.994
1.004
1.002
1.005
1.005

1949

Fig. 5. Distributed-large basin runoff model parameter experiments
RMSE

(cm)

0.0224

0.0217

0.0190

0.0202

0.0184

0.0185

1948

0.880
0.864
0.894
0.871
0.895
0.896

Correlation

1948-1957
1948-1967
1950-1959
1950-1969
1950-1964
1950-1963

Table 2. Selected Summary Statistics for Lumped-Parameter Large Basin Runoff Model Kalamazoo River Calibration
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Table 3. Distributed-Parameter Large Basin Runoff Model Kalamazoo River Calibration Statistics

Long-term average ratio to surface supply

RMSE Surface Groundwater  Upper zone  Lower zone
v: B sef s Daté (cm) wmlpa 03l runoff Interflow flow evaporation  evaporation
0 C — 1 1957 0.0266 0.987 0.946 0.094 0.027 0.258 0.608 0.000
10 C 1 1 1957 0.0261 0.975 0.924 0.084 0.095 0.195 0.598 0.012
20 C 1 1 1957 0.0261 0.976 0.927 0.085 0.089 0.200 0.593 0.016
40 C 1 1 1957 0.0260 0.976 0.930 0.086 0.087 0.202 0.591 0.017
80 Cc 1 1 1957 0.0259 0.977 0.935 0.083 0.071 0.221 0.583 0.023
80 | 1 1 1957 0.0257 0.981 0.887 0.078 0.087 0.211 0.604 0.010
80 | 2 1 1957 0.0257 0.983 0.898 0.080 0.089 0.208 0.611 0.001
80 | 2 2 1957 0.0258 0.983 0.912 0.085 0.091 0.201 0.610 0.004
80 | 2 3 1957 0.0331 0.978 0.793 0.086 0.289 0.001 0.340 0.274
80 | 2 1 1964 0.0217 1.004 0.829 0.061 0.072 0.222 0.578 0.072

*Normalized spatial variation allowed.

PEvapotranspiration assumed “complementary (@) or “independent of{(l) the potential.

‘Spatial variation Set 1, given by Eq®)—(7) or Set 2, given by Eqg8)—<(12).

dSolar insolation consideration (Lise climatic indices for solar insolation and compute heat constant from long-term heat ha2amempute solar
insolation from relations used in WGEN, Richardson and Wright 1:984d 3(use solar insolation based on WGEN directly, no heat constant

CCalibration period end date.

(o), :gsf(\gg,e) (3) Table 3 reduced the error but also pulled the ratios of model to
— , , . - ~actual flow means and variances further from unity. As succes-
where as=spatial average linear reservoir coefficient for basin sjyely more spatial variation was allowed in the paramet@esi-

outflow from_a cell; ands = surface s_Iope of cell. Likewise, brations 3-5 in Table)3 all three measures improve; error drops
percolation, interflow, deep percolation, and groundwater-flow ang the ratios of model to actual flow means and variances again
linear reservoir coefficients were taken, respectively, as approach unity.
u
—fl B
(ap); = O‘pf< QU **9) “) Evapotranspiration

1
KU The first five calibrations in Table 3 were performed with a dis-
(o); :Eif(_liJ,8> (5) tributed LBRM that used complementary evapotranspiration and
d; potential evapotranspiration; see Croley and (2609. In this
case, both potential and actual evapotranspiration depend on the

_(KF available water supply and sum to equal the heat available for
(exg); :adf<g'8> (6) evapotranspiration. If the water supply is large, the daily actual
' evapotranspiration volume approaches the limit of the water sup-
KL ply or the heat available, and the daily potential evapotranspira-
(aghi :ng<d—'L,s) (7) tion volume approaches zero. If the water supply is small, the
i daily actual evapotranspiration volume approaches zero and the
whereKiU:upper anoKiL:Iower soil-zone permeability in ceil daily potential evapotranspiration volume approaches the heat

d’=upper andd-=lower soil-zone depth; and,, «;, oy, and available; see Eqg14)~(17) in Croley and He(2005. _
ag=spatial average coefficients for percolation, interflow, deep ~ As discussed by Croley and H2009, actual and potential
percolation, and groundwater, respectively. Fig. 4 is used to de-€vapotranspiration cannot be regarded as complementary when
termine the soil-zone depths and permeabilities for Fjs<(7). the LBRM is applied to a small cell; they must be replaced with
After introducinge=10% spatial variation into each of the pre- concepts that make sense for the small scale. A more traditional
ceding parameters, we calibrated to find the best values of theindependent concept—that actual evapotranspiration does not af-
spatial averages. We repeated these calibrations#$@0, 40, and fect potential evapotranspiration—is much more appropriate for
80% successive spatial variations to enable the use of calibratecdmall areas, such as each of the cells used in the distributed-
spatial average parameter values from one calibration as reasonparameter LBRM application; see E(1) in Croley and He
able starting values in the next. These calibrations are shown ag20095. The distributed-parameter LBRM was recalibrated, start-
the first five rows in Table 3. Exploration of more thar80% ing with the parameter set from the fifth calibration in Table 3, for
spatial variation in parameter fields indicated that calibrations did the case of independent evapotranspiration and potential evapo-
not improve; we avoided problems of having zero values for transpiration. It is listed as Calibration 6 in Table 3.
model parameters that would existsat 100%. Considering the changed evapotranspiration mechanics in the
The first calibration in Table 8with no spatial variation in the sixth calibration in Table 3 gave mixed statistics. The error was
model parameters allowgdesulted in an error of about 0.27 mm  reduced, compared with the fifth calibration in Table 3, and the
in daily flows but gave near unity values for the ratios of model to ratio of model to actual flow means improvédoser to unity.
actual flow means and variances. Considering 10% spatial varia-However, the ratio of model to actual flow variances was much
tions in the parameters with Eq&)—(7) (second calibration in poorer, suggesting that model output is less variable than actual.
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is computed differently. It gives slightly higher error but has
model variation closer to actual than does the previous model.
Either is probably suitable for future use.

We next used the reverse-engineered WGEN-derived solar in-
solation directly, replacing use of the heat constant applied to
daily air temperature. Doing so eliminates the need to compute a
heat constant in the first place. Results are summarized as Cali-
bration 9 in Table 3. Calibration 9 is much worse in error and
variance than model Calibrations 7 or 8. It shifts evapotranspira-
0 160 tion from solely the upper soil zone to roughly split between the
upper and lower soil zones.

Fig. 6. Kalamazoo River Watershecg/n (1 kn? resolution

Model Comparisons

Alternative Parameter Spatial Patterns The best calibratiorithat is, Calibration 7 in Table)3was re-

We also found calibration statistics to improve with this set of peated for the 1950-1964 calibration period so that we could

spatial variation patterns directly compare it with the lumped-parameter LBRM calibration
I in Table 2; it is shown as the tenth, that is, the last, calibration in

()i :Esf(ﬁys) (8) Table 3. Although the error is actually higher with the distributed

mn model, both models show very similar ratios of model to actual

flow means and very similar long-term average ratios to surface

(ap)i = apf(K, &) 9 supply of surface runoff, interflow, groundwater flow, upper soil-
zone evapotranspiration, and lower soil-zone evapotranspiration.

(o) = oy f(KY,€) (10 Actually, the RMSE in Tables 2 and 3 only reveals part of the
comparison. A better model comparison is given in Fig. 7, which

(ag); = agf(KF ) (11 shows the same typical 2-year hydrograph from some of the mod-
els. The lumped-parameter model, shown in Fi@),7has very

(o) = agf (K €) (12) smooth recessions, whereas the distributed-parameter model

simulations show more variability in the recessions, as would be
expected when spatial variability of rainfall, as well as of param-
eters, is considered. The difference in recession variability be-

wherem=Manning’s roughness coefficient. Fig. 6 shows the spa-
tial variation of Vs/m, constructed from Figs. 2 and 3.
Distributed-parameter calibration statistics for these calibrations, tween Figs. 7a and b reflects precipitation variability only, since
with parameter spatial patterns of E8)~(12), are also summa-  gnatia| narameters variability is absent in both. Figy) Bhows a

rized in Table 3 as Calibration 7. Here we observe that although e closer match between model and actual flows than does Fig.
error remains essentially unchanged—that is, the improvement 'SY(a) but the biggest improvement occurs between Figs.ahd

too dsrrfl I tot bel fslzeen with threg 5|g.n|f|cant. figures, both ratlgs FiLc). The latter allows spatial variability in the model parameters.
rodet to actual flow Means and variances Improve compared Wit j oyise, additional improvement occurs between Figs. ahd

D e ol b e arich U] he sare Indepen g, epresening a change in spatel parametes variaion from
P P P gs.(3)~(7) to Egs.(8)—(12), respectively.

the parameter spatial pattern of Eq8)—(7). Furthermore, we
observe that with this model calibration, about 61% of the surface
supply evaporates, almost entirely from the upper soil zone, and Temporal Scaling

about 21% flows as groundwater. . . . .
° g As illustrated in Tables 2 and 3 and mentioned previously, the

' goodness-of-fit of the lumped-parameter LBRM, in terms of
Insolation RMSE, is better than that of the distributed-parameter LBRM.

Next, we experimented with alternative solar insolation interpre- This resultis in part attributable to the use of the same internal
tations. The lumped-parameter LBRMTable 2 and the computation intervall day in both models, since input meteo-
distributed-parameter LBRMTable 3, the first seven calibra- rology for both models is available only at the daily time interval.
tions) all use daily solar insolation derived from climatic indices; Presumably, the use of good hourly data would enable the
[see EQ.(20) of Croley and He(2005], and compute a heat distributed-parameter model to do better. We did explore calibra-
constant, which is based on a long-term heat balance, to use irfions using the hourly time interval in the distributed-parameter
estimating daily solar insolation from air temperature. We first LBRM but only with daily data values for each of the 24 h in the
replaced the calculation of daily solar insolation from climatic day. Of course, the computation requirements increased dramati-
indices, used in the computation of the heat constant, with its cally; however, no better results were obtained with the daily
reverse-engineered calculatiq€roley and He 2005 from a interval. Also, the results were similar between the hourly and
weather generatdWWGEN) described by Richardson and Wright ~daily models, possibly indicating that the daily time interval is
(1984. We compute daily solar insolation as a function of loca- small enough to allow the assumptions of constant precipitation,
tion, time of year, minimum and maximum air temperature and potential evapotranspiration, and upstream surface flow during
precipitation for the current and previous day, and previous day each time intervalCroley and He 2005 Again, this result is
insolation. The results are summarized as Calibration 8 in Table 3.expected to change with the availability of good hourly data and
It is very similar to Calibration 7; the only difference in the two model modifications that recognize diurnal cycles in several
models is that the insolation, used in computing the heat constant,processes.
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Extensions Alternative Model Structures

We will explore alternative spatial variation schemes, as in Eqs. | '€ Model structure employed herein and described in more de-

(3)(7) or Egs.(8)—(12), by utilizing other observable watershed " tail previously(Croley and He 200b5applies the LBRM to each

characteristics to relate to spatial parameter variation. We alsolNdividual cell in the distributed approach. All subsurface flows
will explore several model formulation alternatives to improve (interflow and groundwater floventer the surface flow before the
performance. surface flow leaves the cell. This approach implies no subsurface

flows between cells. The advantage of this approach is that it is
o ) relatively simple, computationally efficient, and easier to calibrate
Evapotranspiration and Insolation than approaches that allow subsurface flows. However, it is a very

Since the consideration of evapotranspiration and potential evapoJestrictive assumption and probably is the reason for the relatively
transpiration as independefappropriate for small scalgsm- poorer calibration statistics of the distributed-parameter LBRM
proves model performance compared with considering them compared with the lumped-parameter LBRM. We anticipate that
complementary(appropriate for large scaleswe will also ex- the distributed-parameter LBRM calibration can be greatly im-
plore the more traditional Penman-MonteihM) method. The ~ proved by modifying the model to allow subsurface flows be-
PM method is recommended for estimating daily and longer- tween cells. Each watershed cell is divided into an upper soil
period evapotranspiration over a wide range of climate conditions Zone, a lower soil zone, and a groundwater z@@ley and He
(Jensen et al. 1990; Xu and Singh 1298 links vegetation ef- 2005. Each successively flows into the next, and all flow into the
fects to evapotranspiration through aerodynamic and canopy re-surface storage of the cell's channel system.
sistance terms where detailed databases are available. It appears As a first extension of the model structure, we would change
that necessary data are available at the microscale for severathe model to first allow an additional linear-reservoir flow out
Great Lakes riverine watersheds, including the Kalamazoo andof the groundwater-zone storage into a downstream cell
Maumee rivers. groundwater-zone storage; doing so would add an additional pa-
Since the PM method requires aerodynamic and canopy resisfameter to the model and change the continuity equations under-
tance coefficients, databases of vegetation indices from the USG3ying the model(Croley and He 20056 We would then further
can be used to infer roughness lengdtiang et al. 1994 and to modify the model to allow an additional flow into the
derive canopy resistanddensen et al. 1990; Liang et al. 1994; groundwater-zone storage from the upstream cell. Thus, we
Caselles et al. 1998Wind-speed data from climatological data- would route the groundwater flows in a matter analogous to the
bases can be converted to 2-m height wind speed by empiricalsurface routing. Most likely, we would employ the same drainage
formula (Jensen et al. 1990Vapor pressure deficit can be com- cascade of cells used for the surface routing; doing so implies that
puted from minimum and maximum daily air temperatures and the groundwater divides of the watershed underlie the surface
dew point temperatures. Net solar radiation can be estimated aglivides. These modifications would allow groundwater flow in
previously, with vegetation indices used for estimating emissivity, each cell to the surface of that cell while also allowing ground-
and soil heat flux generated as a percentage of net radi&ion water contributions to continue in storageher cell groundwater
gman and Gurney 1991 storagey before appearing at the outlet of the watershed. The
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model structure changes and programming modifications would best results come from using daily solar insolation derived from

be similar to those already made to convert the lumped-parameterclimate indices, as was done in the lumped-parameter model, in

LBRM into the distributed-parameter versid€roley and He the absence of solar insolation observations. Calibration of a

2005. model that uses an hourly time interval yields no improvement
As a second extension of the model structure, we would over one that uses a daily time interval, probably because meteo-

change the model similarly to route additional flows through the rology data were not available and diurnal modeling concepts

lower soil-zone storages of the watershed cells. That is, we allow were not utilized. However, the daily-hourly model comparisons

an additional linear reservoir flow out of the lower soil-zone stor- yield similar results, suggesting that the daily time interval is

age into a downstream cell lower soil-zone storage, thereby add-small enough to allow the assumptions of constant precipitation,

ing an additional parameter to the model. We would also allow an potential evapotranspiration, and upstream surface flow during

additional flow into the lower soil-zone storage from the upstream each time interval. Several model extensions appear logical and

cell and route lower soil-zone flowgterflows in a matter analo- include spatial routing of groundwater, interflow, or upper soil-

gous to the surface and groundwater routings, again employingzone flows.

the same drainage cascade of cells determined by the surface

topography. A third extension, if deemed worthwhile, would ex-

tend the distributed-parameter LBRM in an analogous fashion for
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